The discovery of new materials for making cheap and efficient solar cells is the Holy Grail for solar panels industry. 

 Some recent findings represent a significant step towards achieving that goal.

new photovoltaic materials work just fine without any sunlight

 New photovoltaic materials work just fine without any sunlight

 Researchers at the Lawrence Berkeley National Laboratory, which is under the jurisdiction of the Department of Energy, and the University of California, Berkeley, recently announced that they have developed a new technology that can produce low-cost high-efficiency solar cells of almost any semiconductor material, including those who are present in larger quantities, such as metal oxides, sulfide and phosphide. These materials till now have been considered unstable for making solar cells because it is difficult to adjust their properties by chemical route.


  Current photovoltaic technology relies on rare and expensive semiconductor such as silicon crystals, thin layers of copper cadmium telluride or idnium Galen arsenide, which are either expensive or difficult to convert into a final product.

 -”It is time to start using and bad materials. Our technology allows us to bypass the problems that occur during chemical-tune the properties of materials that are non-toxic and has a massive scale in the country, by simply applying the electric field” – says Alex Zetl who along with colleague Feng Wang leads this research.
  The new technology is called screening-engineered field-effect photovoltaics (SFPV) because it uses the electric field, a phenomenon which is very well known and studied, while the concentration of the carriers of electricity in semiconductors changes in an electric field.

 With this SFVP technology, carefully designed input electrode allows the electric field in the gate electrode to significantly penetrate and evenly distributes the concentration of carriers and their type to create a p-n junction. This allows the creation of high-quality p-n junctions in semiconductors that would otherwise be difficult or impossible to connect with classical chemical methods.

PhotovoltaicMaterials

Photovoltaic Materials

In SFPV system, the structure of the front electrode is also designed to at least one of its dimensions is constant.

 For example, in a configuration with copper oxide, researchers at Berkeley have shaped electrode contact in the form of tiny fingers, while in another case, working with silicon, made ultra-thin contact (only one layer of grafen). With enough thin “fingers” the field in the gate creates an inversion layer with low electrical resistance between the “fingers” and a potential barrier under them. Uniformly thin contact allows the field at the gate to enter there easily tunes the carrier concentration, so get high-quality p-n junctions.

Views: 153

Tags: energies, energy, green, panels, power, renewable, solar

Comment

You need to be a member of Home Energy Pros to add comments!

Join Home Energy Pros

Videos

  • Add Videos
  • View All

Twitter

Latest Activity

Eric Kjelshus commented on Michael Dunseith's photo
Thumbnail

Clearance to combustibles ?

"This show's back drafting of hot water heater.    Seal the return 1st  keep the…"
2 hours ago
Eric Kjelshus commented on John Nicholas's blog post Indoor Air - How do you measure if it is Healthy?
"airadviceforhomes.com   has a quick snap shot test or leave it there for week.   Good…"
2 hours ago
Michael Dunseith liked Kevin Jordan's photo
3 hours ago
Michael D'Arcy replied to Michael D'Arcy's discussion Small video we created to promote Home Performance
"Thanks Tom. Ill make that happen next time."
13 hours ago
Colin Genge posted events
13 hours ago
Anna commented on Mary Desilva's blog post Finding Professional Water Damage Restoration Services
"Mary Desilva thanks for sharing such a great article. I always think why we  should hire…"
17 hours ago
Profile IconNathan St.Germain, Lisa Sweet and Kevin joined Home Energy Pros
18 hours ago
Michael Dunseith's photo was featured
yesterday

© 2016   Created by Lawrence Berkeley National Laboratory.   Powered by

Badges  |  Report an Issue  |  Terms of Service