As we make homes tighter, we need to provide ventilation, which costs energy. One way to reduce the energy impact of that ventilation is to use an air-to-air heat recovery system. A heat recovery ventilator (HRV) recovers sensible heat by exchanging heat between incoming and outgoing airstreams. An energy recovery ventilator (ERV) is similar to an HRV but also allows moisture to be exchanged.


ERVs make a lot of sense both in hot-humid climates and in cold climates. In the former they reduce the dehumidification load by keeping excess moisture out; in the latter they reduce the humidification load by keeping moisture in. Nevertheless, there are reasons why one may wish to be cautious in using ERVs.

ERVs do not make a lot of sense when you want to exhaust excess indoor moisture and replace it with drier outdoor air. Many codes (and ASHRAE Standard 62.2) require kitchen and/or bath exhaust to allow the removal of excess moisture. Running these exhausts through an ERV would recover this moisture and dump it back in house. Rarely is this what one wants to do. Yet there is a growing segment of building professionals who are using ERVs in exactly this way. It is not clear whether this use of an ERV meets the requirement of exhaust, but it does seem clear that it could cause moisture problems.

An even more disconcerting issue is the fact that some ERVs can “recover” formaldehyde in the same way that they recover water. Recent research has confirmed what many of us suspected—that there are hazardous concentrations of formaldehyde in many homes. While the ultimate solution may be source control, dilution ventilation is a key method of reducing indoor concentration. Having ERVs that recover formaldehyde represents a serious risk.

Because water and formaldehyde are reasonably similar chemically, it is not surprising that the mechanisms that would recover water could recover formaldehyde. Research has shown that specific materials (for example, certain desiccants and plastics) can do a good job of this. That is not to say, however, that all ERVs do, in fact, recover formaldehyde. Clever designs of materials, layers, coatings, membranes, and so forth could in theory make ERVs highly selective. There is, unfortunately, almost no data available on the performance of ERVs currently on the market with respect to formaldehyde (or other contaminants). Such test data is needed on the various ERVs in the marketplace. Unless one knows that formaldehyde is not a contaminant of concern, one should probably be cautious in using ERVs.

The yellow flag is out on energy recovery ventilators.

 

- Max Sherman


Max Sherman is a senior scientist in the Environmental Energy Technologies Division at Lawrence Berkeley National Laboratory and a frequent contributor to Home Energy.

Views: 60

Comment

You need to be a member of Home Energy Pros to add comments!

Join Home Energy Pros

Home Energy Pros

Home Energy Pros was founded by the developers of Home Energy Saver Pro (sponsored by the U.S. Department of Energy,) and brought to you in partnership with Home Energy magazine.

Latest Activity

Robert Leone added a discussion to the group Energy Auditing Equipment for Sale, Trade or to Purchase
Thumbnail

Blower Door Package for Sale

Hi,I am selling my blower door with extras as a package or individually. These items are used but…See More
4 hours ago
Profile IconRobert Leone and Richard Vito joined allen p tanner's group
Thumbnail

Energy Auditing Equipment for Sale, Trade or to Purchase

Discuss the pros and cons of the equipment you are interested in prior to purchase. Post equipment…See More
4 hours ago
Richard Vito joined Sean Lintow Sr's group
Thumbnail

Best Practices (Residential)

Best Building, Retrofitting, or even Auditing Practices - what are they, what should change, what…See More
12 hours ago
Richard Vito joined James Sayers's group
Thumbnail

Marketing Energy Efficiency

Sharing ideas, tools and examples of promoting energy efficiency to consumersSee More
12 hours ago
Richard Vito joined Allison A. Bailes III's group
Thumbnail

HVAC

HVAC design, Manuals J, S, T, & D, Duct leakage, Air flow, ENERGY STAR new home requirements,…See More
12 hours ago
Richard Vito joined Kyle Brown's group
Thumbnail

Wrightsoft - Manual J / Manual D

If you use Wrightsoft to calculate loads or design ducts, you likely have questions.  Get answers…See More
12 hours ago
Jim Gunshinan commented on Jim Gunshinan's blog post Energy Upgrade California—Up Close and Personal
"I had a revelation while attending Bruce Manclark's session of duct leak testing at the Energy…"
yesterday
George J. Nesbitt commented on Jim Gunshinan's blog post Energy Upgrade California—Up Close and Personal
"Blower Door; the 2007 test was a depressurization test, and the 2014 a pressurization test, which…"
yesterday
George J. Nesbitt replied to Kaushal Bharath Raju's discussion Affordability & Deep Energy Upgrade/Passive House Retrofit in Berkeley, California.
"Plan, plan, plan, plan. The 1st step to is to understand the house, how it's built, the…"
yesterday
George J. Nesbitt posted an event

High Performance Windows - A Panel of Experts at Pyramid Alehouse`

April 26, 2014 from 3pm to 5pm
Join a lively panel discussion on high performance windows. We'll cover some basics, as well as…See More
yesterday
Kaushal Bharath Raju replied to Kaushal Bharath Raju's discussion Affordability & Deep Energy Upgrade/Passive House Retrofit in Berkeley, California.
"Hi David, Thanks for pointing out Martin Holiday's article. I do not wish to engage in the…"
yesterday
Profile IconAdam Penberthy, Scot Davidson and j jarvella joined Home Energy Pros
yesterday

© 2014   Created by Lawrence Berkeley National Laboratory.

Badges  |  Report an Issue  |  Terms of Service