Trying to find %age energy saving from variety of upgrades in 10K sf multifamily house

I'm trying to figure out %age of energy savings from a variety of upgrades in a 10,000 sf building that has had deferred maintenance and a disfunctional heating system.

I'm using Energy Pro software and trying to figure out what the air flow reduction will be after adding insulation where there is none. The windows are mostly w/o hardware to keep them shut. The forced air system is nonfunctional mostly as there is no way for air to get back to the return air grill (it goes out the windows).

As it is now, the building has de facto electric heat as the forced air hardly functions. Because of this the 30 residents mostly use electric heater. I surmise that after a high quality insulation job and actually sealing the house and HVAC system that there will be little need for electric heat in mild Berkeley, CA.

 

How can I estimate air flow/leakage after the improvements? I got a stunning 27,000 CFM with my blower door in this big leaky 3 story, 10,000 sf house. I know I'm going to improve it drastically if I can sell the job.

 

Also, some of the energy improvements are really deferred maintenance rather than an energy upgrade. The historic steel windows have probably been semi-functional for many decades.

This is a bit more complicated than what I'm used to.

I've gotten bids from a variety of subs to do a quality energy upgrade and need to justify/show improvements and NPV to get a subsidy.

Thanks for any help,

George

Views: 152

Replies to This Discussion

Hello George,

If it were me, I would use the monthly electric bills to determine the average kW for each month's consumption by dividing the monthly kWh by the number of days in the billing period and dividing by 24 hours per day.  I would then determine the average monthly temperature for each monthly read and then plot the average kW verses the average temperature for each month.  The resulting slope of the line during the winter shows the total heat loss for the building that includes ventilation, conduction and existing infiltration.  Calculate the slope of the building's actual heat loss line.  Compare this actual heat loss coefficient to the total predicted heat loss coefficient (kW/F) for the building that includes the condution heat losses, ventilation air and an expected air infiltration rate if the building were properly sealed (0.75 ACH?).  You can then calculate the contribution that the excessive infiltration is having on the building's total heat loss by subtracting the predicted building's total heat loss from the the slope of the actual building's heat loss.

New Infiltration Heat Loss, kW/F = [Expected ACH after air sealing] /hr x [Volume of Home] ft3 x 0.24 BTU/lb F x 0.075 lb/ft3 / 3413 BTU/kW-Hr.

 

Conduction Heat Loss, kW/F = [Wall U-Value] BTU/Hr/Ft2/F x [Wall Area] Ft2 / 3413 BTU/kW-Hr

 

Ventilation Heat Loss , kW/Ft = [Ventilation CFM] Ft3/Min x 0.25 BTU/lb F x 0.075 lb/ft3 x 60 min/Hr / 3413 BTU/kW-Hr

 

The predicted energy savings is simply the difference between the slope of the actual heat loss line and the slope of the predicted heat loss.

Savings Potential, kW/F = Actual kW/F - (New Infiltration Heat Loss + ventilation Heat Loss + Ventilation Heat Loss)

Hi George,

You don't happen to have a spreadsheet handy for those calculations do you? :-)

Here is a spreadsheet that I have for identifying savings using monthly bills and average monthly temperatures.

We documented actual energy savings using this method during our "Reduce Your Use" contest that we conducted here at Chelan County Public Utility District.

 

Jim White

Sr. Energy Conservation Engineer

Attachments:

O.K., forget all of the Engineer jokes! Thank you very much Jim. Engineers rule!

RSS

Discussion Forum

Transient Heat Transfer Analysis

Started by James White. Last reply by James White Dec 10, 2013. 5 Replies

How about simulation in the multifamily context?

Started by Evan Mills. Last reply by Don Hynek Jan 23, 2012. 6 Replies

Modeling Domestic Hot Water Systems

Started by James White. Last reply by Steve Waclo Nov 24, 2010. 1 Reply

Videos

  • Add Videos
  • View All

Latest Activity

Bryan Gabriel replied to Larry Nissman's discussion Strange IR Image
"Is this a close up or broad view?"
15 minutes ago
Kevin Daly is now a member of Home Energy Pros
51 minutes ago
Home Energy Magazine posted a blog post
4 hours ago
Ashique Ibrahim posted a status
"Hello everyone.Please suggest a software to carry out analysis of energy auditing."
8 hours ago
Ashique Ibrahim posted a status
"Hello guys. I am student im doing my project on emergy auditing and benchmarrking. Please suggest the best software to do the analysis."
8 hours ago
Adin Maynard replied to Adin Maynard's discussion 2x DG-700 manometers for sale in the group Energy Auditing Equipment for Sale, Trade or to Purchase
"Yes, one is still available ."
yesterday
Mark Thomas replied to Adin Maynard's discussion 2x DG-700 manometers for sale in the group Energy Auditing Equipment for Sale, Trade or to Purchase
"Very interested in purchasing a dg 700. still availible please let me know asap. Thanks!"
yesterday
Profile IconMark Thomas and Donn Anderson joined allen p tanner's group
Thumbnail

Energy Auditing Equipment for Sale, Trade or to Purchase

Discuss the pros and cons of the equipment you are interested in prior to purchase. Post equipment…See More
yesterday

Home Energy Pros

Welcome to Home Energy Pros – the unique digital community by and for those who work in the home energy performance arena.

Home Energy Pros was founded by the developers of Home Energy Saver Pro (supported by the U.S. Department of Energy) and brought to you in partnership with Home Energy magazine.  Home Energy Pros is sponsored by the Better Buildings Residential Network. Please honor our Guidelines

© 2017   Created by Lawrence Berkeley National Laboratory.   Powered by

Badges  |  Report an Issue  |  Terms of Service