Trying to find %age energy saving from variety of upgrades in 10K sf multifamily house

I'm trying to figure out %age of energy savings from a variety of upgrades in a 10,000 sf building that has had deferred maintenance and a disfunctional heating system.

I'm using Energy Pro software and trying to figure out what the air flow reduction will be after adding insulation where there is none. The windows are mostly w/o hardware to keep them shut. The forced air system is nonfunctional mostly as there is no way for air to get back to the return air grill (it goes out the windows).

As it is now, the building has de facto electric heat as the forced air hardly functions. Because of this the 30 residents mostly use electric heater. I surmise that after a high quality insulation job and actually sealing the house and HVAC system that there will be little need for electric heat in mild Berkeley, CA.

 

How can I estimate air flow/leakage after the improvements? I got a stunning 27,000 CFM with my blower door in this big leaky 3 story, 10,000 sf house. I know I'm going to improve it drastically if I can sell the job.

 

Also, some of the energy improvements are really deferred maintenance rather than an energy upgrade. The historic steel windows have probably been semi-functional for many decades.

This is a bit more complicated than what I'm used to.

I've gotten bids from a variety of subs to do a quality energy upgrade and need to justify/show improvements and NPV to get a subsidy.

Thanks for any help,

George

Views: 156

Replies to This Discussion

Hello George,

If it were me, I would use the monthly electric bills to determine the average kW for each month's consumption by dividing the monthly kWh by the number of days in the billing period and dividing by 24 hours per day.  I would then determine the average monthly temperature for each monthly read and then plot the average kW verses the average temperature for each month.  The resulting slope of the line during the winter shows the total heat loss for the building that includes ventilation, conduction and existing infiltration.  Calculate the slope of the building's actual heat loss line.  Compare this actual heat loss coefficient to the total predicted heat loss coefficient (kW/F) for the building that includes the condution heat losses, ventilation air and an expected air infiltration rate if the building were properly sealed (0.75 ACH?).  You can then calculate the contribution that the excessive infiltration is having on the building's total heat loss by subtracting the predicted building's total heat loss from the the slope of the actual building's heat loss.

New Infiltration Heat Loss, kW/F = [Expected ACH after air sealing] /hr x [Volume of Home] ft3 x 0.24 BTU/lb F x 0.075 lb/ft3 / 3413 BTU/kW-Hr.

 

Conduction Heat Loss, kW/F = [Wall U-Value] BTU/Hr/Ft2/F x [Wall Area] Ft2 / 3413 BTU/kW-Hr

 

Ventilation Heat Loss , kW/Ft = [Ventilation CFM] Ft3/Min x 0.25 BTU/lb F x 0.075 lb/ft3 x 60 min/Hr / 3413 BTU/kW-Hr

 

The predicted energy savings is simply the difference between the slope of the actual heat loss line and the slope of the predicted heat loss.

Savings Potential, kW/F = Actual kW/F - (New Infiltration Heat Loss + ventilation Heat Loss + Ventilation Heat Loss)

Hi George,

You don't happen to have a spreadsheet handy for those calculations do you? :-)

Here is a spreadsheet that I have for identifying savings using monthly bills and average monthly temperatures.

We documented actual energy savings using this method during our "Reduce Your Use" contest that we conducted here at Chelan County Public Utility District.

 

Jim White

Sr. Energy Conservation Engineer

Attachments:

O.K., forget all of the Engineer jokes! Thank you very much Jim. Engineers rule!

RSS

Discussion Forum

Transient Heat Transfer Analysis

Started by James White. Last reply by James White Dec 10, 2013. 5 Replies

How about simulation in the multifamily context?

Started by Evan Mills. Last reply by Don Hynek Jan 23, 2012. 6 Replies

Modeling Domestic Hot Water Systems

Started by James White. Last reply by Steve Waclo Nov 24, 2010. 1 Reply

Videos

  • Add Videos
  • View All

Latest Activity

Profile IconSharon Block, Travis Lundberg, Ryan & Shannon Coon and 2 more joined Home Energy Pros
8 hours ago
Gary Reed added a discussion to the group Job Board
Thumbnail

HOME ENERGY ADVISORS WANTED (NEW YORK STATE: Saratoga & Glens Falls Region)

We are currently seeking experienced HOME ENERGY ADVISEOS to join the Jack Hall Plumbing &…See More
16 hours ago
Profile IconGary Reed and Kurt Shafer joined Diane Chojnowski's group
Thumbnail

Job Board

This group is for posting jobs related to all aspects of the home performance industry including…See More
17 hours ago
Ron Sarrick liked Energy Wise Solutions's discussion What causes a temperature plane in a home
18 hours ago
Kurt Shafer added a discussion to the group Job Board
Thumbnail

Installers for Whole House Fans in Various Cities

Invisco Whole House Fan Company in Temecula CA sells the highest performance fans in history. The…See More
19 hours ago
Kurt Shafer posted a blog post

First Rooftop Whole House Fan for Homes without Attics

Eichler was one of the most famous Mid Century Modern home builders in the 50s and 60s. His homes…See More
19 hours ago
Travis Lundberg replied to angela stanzione's discussion Used Weatherization and auditing equipment for sale in the group Energy Auditing Equipment for Sale, Trade or to Purchase
"Do you still happen to have a blower door fan, frame and fabric still for sale?  If so please…"
20 hours ago
Profile IconTravis Lundberg and Alana Barnett joined allen p tanner's group
Thumbnail

Energy Auditing Equipment for Sale, Trade or to Purchase

Discuss the pros and cons of the equipment you are interested in prior to purchase. Post equipment…See More
20 hours ago

Home Energy Pros

Welcome to Home Energy Pros – the unique digital community by and for those who work in the home energy performance arena.

Home Energy Pros was founded by the developers of Home Energy Saver Pro (supported by the U.S. Department of Energy) and brought to you in partnership with Home Energy magazine.  Home Energy Pros is sponsored by the Better Buildings Residential Network. Please honor our Guidelines

© 2017   Created by Lawrence Berkeley National Laboratory.   Powered by

Badges  |  Report an Issue  |  Terms of Service