I have put together an Excel spreadsheet that calculates the temperature profile through a wall that is heated by the sun.

It use the matrix [K]{T} + [C]{dT/dt} = {S}, where [K] is the heat transfer, {T} is the temperature at the various nodes, [C] is the thermal capacitance of the node, and {S} is the thermal heat gain of the outer node. A copy of the spreadsheet and matrix math is attached.

The math equations have not been verified for accuracy or errors, but it is kind of fun to play around with the variables to see how the temperature profile in the wall changes throughout the day.

(Note that an earlier version of this post had the attached Excel file as a *.zip file.  It has been replaced with an Excel version.)

Tags: difference, element, finite, heat, transfer, transient

Views: 736

Attachments:

Replies to This Discussion

Does this assume that all the heat the face is not leaving, or does it account for convetive currents on the face taking some heat away? Does it assume no wind? What boundry factors have you set up?

The spreadsheet calculates whether heat is going in or out.  Yes, it accounts for convective currents removing heat from the surface.  You can specify any interior or interior convective heat transfer coefficients or air temperatures that you want.  You can also specify the amount of solar gain that the wall receives based on the absorption coefficient.  A perfectly black surface would absorb all of the solar heat (Absorbtivity = 1.0) and a perfectly reflective surface would have zero absorbtivity. I used it recently to model the heat transfer in and out of cold storage rooms that is kept at 32F.

I'm working on an updated model that provides the thermal properties for different building materials and different convective heat transfer coefficients for wind, no wind, surface orientation etc. 

In addition to calculating the heat flow through walls, the spreadsheet could also be used to calculate how quickly the outside of your coffee cup would warm up after filling it with coffee.

This is a nice graphic.  I have a question on how you captured the data -- did you set temperature probes at increasing depths into the brick wall, or are these extrapolated from the delta between interior and exterior temperatures?  Thank you.

The values are all calculated for each node based on the physical characteristics that are input into the model.

To, Ti, hi and ho are inside and outside temperatures and convective heat transfer coefficients,

K is the Conductance (Conductivity/Thickness) of each layer

ρ is the layer's density, and

Cp is the specific heat of the material.

Attached is a detailed description of how I derived the calculations that are used in this transient heat transfer analysis.

Attachments:

RSS

Home Energy Pros

Home Energy Pros was founded by the developers of Home Energy Saver Pro (sponsored by the U.S. Department of Energy,) and brought to you in partnership with Home Energy magazine.

Latest Activity

Jim Gunshinan posted blog posts
9 hours ago
H.O. Electric posted a photo

about us-team

H.O. Services is your residential Electric-Plumbing-Heating-Cooling Specialist. We are an…
10 hours ago
H.O. Electric added a discussion to the group News & Announcements
Thumbnail

Stay Cool With Easy To Install Ductless AC System!

Stay Cool With Easy To Install Ductless AC System!   Save $300.00 Off A New AC System For A Limited…See More
10 hours ago
Richard Wells commented on Diane Chojnowski's group Facebook Pages
"Three thousand home energy efficiency audits, and nearly a thousand retrofits in four short…"
11 hours ago
Richard Wells joined Diane Chojnowski's group
Thumbnail

Facebook Pages

Does your company or organization have a Facebook Page?This group is for pros who have facebook…See More
11 hours ago
David Baerg replied to Blake Shurtz's discussion Air sealing wood-burning fireplace from the crawlspace below
"Hi Blake, Do you mean around the underside of the hearth?  Are you trying to seal between the…"
12 hours ago
Tom White's video was featured

Rebirth Realty: Restoring Detroit properties for Venture for America Fellows

Its been a long, cold winter, but we've made significant progress in the restoration of 760 Virginia Park. Join Tim Dingman on a walkthrough to see what we've done.
13 hours ago
Kim Tanner added a discussion to the group Multifamily Buildings
Thumbnail

Blower Door Applications Guide

TEC and Camroden Associates have released their big building testing manual, Blower Door…See More
13 hours ago
Profile Iconmichael coleman, Dan Liska and Rob Moreno joined Home Energy Pros
14 hours ago
Christopher Morin's blog post was featured

5 Things New Energy Efficiency HVAC Contractors Need to Know

1. Do not sell on Price! Use 'Simple Payback'The price of High-efficient equipment will undoubtedly…See More
yesterday
Jim Gunshinan's blog post was featured
yesterday
Kim Tanner commented on Diane Chojnowski's group Home Energy Pros on Twitter
"Follow The Energy Conservatory on Twitter! We'll follow…"
yesterday

© 2014   Created by Lawrence Berkeley National Laboratory.

Badges  |  Report an Issue  |  Terms of Service