I have put together an Excel spreadsheet that calculates the temperature profile through a wall that is heated by the sun.

It use the matrix [K]{T} + [C]{dT/dt} = {S}, where [K] is the heat transfer, {T} is the temperature at the various nodes, [C] is the thermal capacitance of the node, and {S} is the thermal heat gain of the outer node. A copy of the spreadsheet and matrix math is attached.

The math equations have not been verified for accuracy or errors, but it is kind of fun to play around with the variables to see how the temperature profile in the wall changes throughout the day.

(Note that an earlier version of this post had the attached Excel file as a *.zip file.  It has been replaced with an Excel version.)

Tags: difference, element, finite, heat, transfer, transient

Views: 878

Attachments:

Replies to This Discussion

Does this assume that all the heat the face is not leaving, or does it account for convetive currents on the face taking some heat away? Does it assume no wind? What boundry factors have you set up?

The spreadsheet calculates whether heat is going in or out.  Yes, it accounts for convective currents removing heat from the surface.  You can specify any interior or interior convective heat transfer coefficients or air temperatures that you want.  You can also specify the amount of solar gain that the wall receives based on the absorption coefficient.  A perfectly black surface would absorb all of the solar heat (Absorbtivity = 1.0) and a perfectly reflective surface would have zero absorbtivity. I used it recently to model the heat transfer in and out of cold storage rooms that is kept at 32F.

I'm working on an updated model that provides the thermal properties for different building materials and different convective heat transfer coefficients for wind, no wind, surface orientation etc. 

In addition to calculating the heat flow through walls, the spreadsheet could also be used to calculate how quickly the outside of your coffee cup would warm up after filling it with coffee.

This is a nice graphic.  I have a question on how you captured the data -- did you set temperature probes at increasing depths into the brick wall, or are these extrapolated from the delta between interior and exterior temperatures?  Thank you.

The values are all calculated for each node based on the physical characteristics that are input into the model.

To, Ti, hi and ho are inside and outside temperatures and convective heat transfer coefficients,

K is the Conductance (Conductivity/Thickness) of each layer

ρ is the layer's density, and

Cp is the specific heat of the material.

Attached is a detailed description of how I derived the calculations that are used in this transient heat transfer analysis.

Attachments:

RSS

Home Energy Pros

Home Energy Pros was founded by the developers of Home Energy Saver Pro (sponsored by the U.S. Department of Energy,) and brought to you in partnership with Home Energy magazine.

Latest Activity

Ethan Bukowiec replied to Ethan Bukowiec's discussion Thoughts on energy startup's new propane smart meter
"Wanted to give everyone an update on how things are doing with our Kickstarter campaign. We have…"
7 hours ago
Tom White's video was featured

Unlocking the Power of Grey Water in a Living Building Challenge Home

Rob Nicely, President of Carmel Building & Design talks with Tom Wood, Nexus eWater System's Chief Technology Officer, about Unlocking the Power of Grey Water.
7 hours ago
Griffin Hagle's discussion was featured

You're designing a Home Performance dashboard. Which 6 metrics do you include?

Credit Karma got me thinking about this. For those who are unfamiliar, it's a free* online credit…See More
7 hours ago
Bud Poll's discussion was featured

Inconsistant Local Authority

It becomes frustrating to give people modern advice and then have to backtrack and tell them to do…See More
7 hours ago
w d's discussion was featured

Managing Solar Energy

What's the state of the art on managing solar energy (esp. at the home)?There's surely no…See More
7 hours ago
Ethan Bukowiec's discussion was featured

Thoughts on energy startup's new propane smart meter

Hello,I wanted to introduce you all to a new energy startup I am working with called …See More
7 hours ago
George Kopf's discussion was featured
7 hours ago
John Porterfield replied to Dave Robinson's discussion Can We PLEASE Stop Calling Them “Ductless” in the group 1000 Home Challenge
"Any update on this work?  Seems manufacturers would provide an indoor coil that would…"
8 hours ago

© 2014   Created by Lawrence Berkeley National Laboratory.

Badges  |  Report an Issue  |  Terms of Service