I have put together an Excel spreadsheet that calculates the temperature profile through a wall that is heated by the sun.

It use the matrix [K]{T} + [C]{dT/dt} = {S}, where [K] is the heat transfer, {T} is the temperature at the various nodes, [C] is the thermal capacitance of the node, and {S} is the thermal heat gain of the outer node. A copy of the spreadsheet and matrix math is attached.

The math equations have not been verified for accuracy or errors, but it is kind of fun to play around with the variables to see how the temperature profile in the wall changes throughout the day.

(Note that an earlier version of this post had the attached Excel file as a *.zip file.  It has been replaced with an Excel version.)

Tags: difference, element, finite, heat, transfer, transient

Views: 878

Attachments:

Replies to This Discussion

Does this assume that all the heat the face is not leaving, or does it account for convetive currents on the face taking some heat away? Does it assume no wind? What boundry factors have you set up?

The spreadsheet calculates whether heat is going in or out.  Yes, it accounts for convective currents removing heat from the surface.  You can specify any interior or interior convective heat transfer coefficients or air temperatures that you want.  You can also specify the amount of solar gain that the wall receives based on the absorption coefficient.  A perfectly black surface would absorb all of the solar heat (Absorbtivity = 1.0) and a perfectly reflective surface would have zero absorbtivity. I used it recently to model the heat transfer in and out of cold storage rooms that is kept at 32F.

I'm working on an updated model that provides the thermal properties for different building materials and different convective heat transfer coefficients for wind, no wind, surface orientation etc. 

In addition to calculating the heat flow through walls, the spreadsheet could also be used to calculate how quickly the outside of your coffee cup would warm up after filling it with coffee.

This is a nice graphic.  I have a question on how you captured the data -- did you set temperature probes at increasing depths into the brick wall, or are these extrapolated from the delta between interior and exterior temperatures?  Thank you.

The values are all calculated for each node based on the physical characteristics that are input into the model.

To, Ti, hi and ho are inside and outside temperatures and convective heat transfer coefficients,

K is the Conductance (Conductivity/Thickness) of each layer

ρ is the layer's density, and

Cp is the specific heat of the material.

Attached is a detailed description of how I derived the calculations that are used in this transient heat transfer analysis.

Attachments:

RSS

Home Energy Pros

Home Energy Pros was founded by the developers of Home Energy Saver Pro (sponsored by the U.S. Department of Energy,) and brought to you in partnership with Home Energy magazine.

Latest Activity

Matthew Lutz commented on Kaplan Clean Tech's blog post The Difference Between Home Inspection and Energy Auditing [Infographic]
"I would have to agree with Steve on this.  I am a Certified Energy Manager and have performed…"
4 hours ago
Matthew Lutz joined Diane Chojnowski's group
Thumbnail

Hall of Shame

In this group, members share an array of images from the field, showing the kinds of issues…See More
4 hours ago
Matthew Lutz replied to Kari Sauder's discussion Easy Water Heater Venting in the group Hall of Shame
"I have been in the HVAC trade since 1986. I have recently completed a Home or Real Estate…"
4 hours ago
Susan E. Buchan posted an event

EEBA Houses That Work at Hilton Asheville Biltmore Park

November 3, 2014 from 8am to 4:30pm
Registration: 8:00 amSession: 8:30 am to 4:30 pmWorkshop Covers:Introduction to EEBA and its…See More
9 hours ago
Susan E. Buchan posted a status
"EEBA has scholarships to our Houses That Work Sessionsfor Vets! Contact info@eeba.org for more info"
9 hours ago
EnergyLogic Academy posted events
10 hours ago
Andrew Peel posted an event

Using PHPP in Building Design and Certification at Queen's Quay

November 24, 2014 at 9am to November 25, 2014 at 5pm
In this two-day course, participants will learn how to use the PHPP for residential building design…See More
11 hours ago
Graham Irwin replied to George Kopf's discussion How does efficiency factor into a grid parity world?
"John, Interesting though, if you read this NREL article…"
12 hours ago

© 2014   Created by Lawrence Berkeley National Laboratory.

Badges  |  Report an Issue  |  Terms of Service