I have reviewed, tested, studied, asked, and analyzed the many facets of whole house air leakage.  I am still somewhat unsure what constitutes a respectable level of air leakage to a home.  Newer homes built to higher standards are not a problem but when you get into older homes with varying degrees of air leakage depending on when they were built and by whom presents some interesting situations.  The recommended rates of leakage on older homes do not present the same situation as new homes as there are many areas of the home which are not accessible and to properly be able to reduce the leakage to ASHRAE guidelines would mean in many cases a major teardown and reconstruction to be able to seal the leakage to the "standards".  In addition, many of these homes were built on the premise that the leakage would keep the wood and structure dry, minimizing those types of problems.

If you have suggestions, references and guidelines, please let me know.  Thank you for your input. 

Roy Sakamoto

Views: 846

Reply to This

Replies to This Discussion

This jives with my experience trying to air seal a very small house - lots of caulk and foam and not much of a result (only a few hundred CFM after several hours of work).  Bigger homes seem easier to reduce in my experience.

This is definitely worth investigating if you are an air sealer and are forced to use the ACH50 metric.

First look at a 1500 ft2 ranch on a slab at 50'X30' with an 8' ceiling.  It has a volume of 12,000 ft3, and a surface area, all-in, of 4280 ft2.  If we divide the surface area by the volume, we get .36 - this is a measure of the number of square feet represented by each cubic foot of volume.

Then look at 3000 ft2 2-story on a basement at 50'X30' with 9' ceilings above grade.  It has a volume of 39,000 ft3 and a surface area of 7160 ft2.  Divide the surface area by the volume and we get .18.

So each cubic foot of the volume of the big house represents twice as much surface square footage as it does in the small house.  To reach the same 3 ACH50, each square foot of the smaller house must be 2 X as tight as the ones on the big house.  Or the way I like to phrase it, each square foot of the bigger house is allowed to by twice as leaky as that on the small house.

You can do the same exercise with that small house on a basement, with a house that is "U" shaped, with a long rectangle, with a square, etc.  And you can even see that the big house with 8' ceilings instead of 9' has a ratio of .19 - so just raising the ceiling a foot gives you a 5%+ advantage on the final air leakage number!

In MD that has had the '12 code for a year and 9 months, just last week I spoke with the head inspector of one of the counties.  He told me they still have a 30-40% failure rate and they are all houses under 2000 ft2.

Wrong metric.  

Hope we aren't hijacking the thread, but this applies to old houses as well as new.

RSS

Featured Forum Discussions

Too many BTU's. Too much horsepower?

Started by Steve in General Forum. Last reply by Eric Kjelshus 17 hours ago. 4 Replies

Stack/wind pressure and flow networks.

Started by Daniel James Grundy in Training. Last reply by Daniel James Grundy yesterday. 5 Replies

BDT with vermiculite in hollow CMU walls?

Started by Brad Cook in General Forum. Last reply by John Nicholas on Thursday. 2 Replies

Strange IR Image

Started by Larry Nissman in General Forum. Last reply by Brad Cook Mar 9. 7 Replies

Videos

  • Add Videos
  • View All

Latest Activity

Eric Kjelshus replied to Steve's discussion Too many BTU's. Too much horsepower?
"Its more about run time with high RH removing, than to large over sized AC unit, in houses.  …"
17 hours ago
Sarah OConnell posted a blog post

Crowdsourcing for Innovation

Share Your Ideas!Novel Building Envelope Design for Increased Thermal PerformanceIn 2014, more than…See More
yesterday
Colin de Paor is now a member of Home Energy Pros
yesterday
Walter Ahlgrim replied to Steve's discussion Too many BTU's. Too much horsepower?
"The 5 ton system you have is not 500 hp racecar engines they are 500 hp truck engines. The duct…"
yesterday
Daniel James Grundy replied to Daniel James Grundy's discussion Stack/wind pressure and flow networks.
"So I wanted to start with a basic who can help then go into more detail later. But yes find…"
yesterday
Daniel James Grundy replied to Daniel James Grundy's discussion Stack/wind pressure and flow networks.
"My tutor got back to me and while areas don't quite feel right a little to much assumptions…"
yesterday
Brennan Less replied to Daniel James Grundy's discussion Stack/wind pressure and flow networks.
"Daniel, I'm assuming you're trying to predict the airflows through the different openings…"
Thursday
Martin Newmark joined allen p tanner's group
Thumbnail

Energy Auditing Equipment for Sale, Trade or to Purchase

Discuss the pros and cons of the equipment you are interested in prior to purchase. Post equipment…See More
Thursday

Home Energy Pros

Welcome to Home Energy Pros – the unique digital community by and for those who work in the home energy performance arena.

Home Energy Pros was founded by the developers of Home Energy Saver Pro (supported by the U.S. Department of Energy) and brought to you in partnership with Home Energy magazine.  Home Energy Pros is sponsored by the Better Buildings Residential Network. Please honor our Guidelines

© 2017   Created by Lawrence Berkeley National Laboratory.   Powered by

Badges  |  Report an Issue  |  Terms of Service