I have reviewed, tested, studied, asked, and analyzed the many facets of whole house air leakage.  I am still somewhat unsure what constitutes a respectable level of air leakage to a home.  Newer homes built to higher standards are not a problem but when you get into older homes with varying degrees of air leakage depending on when they were built and by whom presents some interesting situations.  The recommended rates of leakage on older homes do not present the same situation as new homes as there are many areas of the home which are not accessible and to properly be able to reduce the leakage to ASHRAE guidelines would mean in many cases a major teardown and reconstruction to be able to seal the leakage to the "standards".  In addition, many of these homes were built on the premise that the leakage would keep the wood and structure dry, minimizing those types of problems.

If you have suggestions, references and guidelines, please let me know.  Thank you for your input. 

Roy Sakamoto

Views: 809

Reply to This

Replies to This Discussion

This jives with my experience trying to air seal a very small house - lots of caulk and foam and not much of a result (only a few hundred CFM after several hours of work).  Bigger homes seem easier to reduce in my experience.

This is definitely worth investigating if you are an air sealer and are forced to use the ACH50 metric.

First look at a 1500 ft2 ranch on a slab at 50'X30' with an 8' ceiling.  It has a volume of 12,000 ft3, and a surface area, all-in, of 4280 ft2.  If we divide the surface area by the volume, we get .36 - this is a measure of the number of square feet represented by each cubic foot of volume.

Then look at 3000 ft2 2-story on a basement at 50'X30' with 9' ceilings above grade.  It has a volume of 39,000 ft3 and a surface area of 7160 ft2.  Divide the surface area by the volume and we get .18.

So each cubic foot of the volume of the big house represents twice as much surface square footage as it does in the small house.  To reach the same 3 ACH50, each square foot of the smaller house must be 2 X as tight as the ones on the big house.  Or the way I like to phrase it, each square foot of the bigger house is allowed to by twice as leaky as that on the small house.

You can do the same exercise with that small house on a basement, with a house that is "U" shaped, with a long rectangle, with a square, etc.  And you can even see that the big house with 8' ceilings instead of 9' has a ratio of .19 - so just raising the ceiling a foot gives you a 5%+ advantage on the final air leakage number!

In MD that has had the '12 code for a year and 9 months, just last week I spoke with the head inspector of one of the counties.  He told me they still have a 30-40% failure rate and they are all houses under 2000 ft2.

Wrong metric.  

Hope we aren't hijacking the thread, but this applies to old houses as well as new.

RSS

Videos

  • Add Videos
  • View All

Twitter

Latest Activity

Profile IconMichael Sumpter and Bill Gartner joined Home Energy Pros
13 hours ago
Malcolm Jackson joined allen p tanner's group
Thumbnail

Energy Auditing Equipment for Sale, Trade or to Purchase

Discuss the pros and cons of the equipment you are interested in prior to purchase. Post equipment…See More
17 hours ago
Amber Vignieri liked tedkidd's discussion What if more efficient homes were actually worth more?
20 hours ago
Amber Vignieri posted a blog post
21 hours ago
Eric Kjelshus replied to Rob Madden, Solar Home Broker's discussion Indoor Air Quality Monitors and Meters
"I have been using air advice for 5 yr or so - I end up with a report in 35 min I can e-mail or show…"
22 hours ago
Profile IconShane Matteson, Jay Cooper and Mike Harris joined Home Energy Pros
yesterday
Kim Burnett commented on Diane Chojnowski's group Home Energy Pros on Twitter
"Good morning, would you please add me. Thank you. Kim Burnett A+ Abundant Energy Experts"
yesterday
Kim Burnett joined Diane Chojnowski's group
Thumbnail

Home Energy Pros on Twitter

We've created a twitter list of members of Home Energy Pros who tweet about home performance and…See More
yesterday

© 2016   Created by Lawrence Berkeley National Laboratory.   Powered by

Badges  |  Report an Issue  |  Terms of Service