I'm opening a separate discussion under a new thread as this one: http://homeenergypros.lbl.gov/forum/topics/locating-the-neutral-pre...  was getting overly congested and this topic deserves its own space.

Homes need to be tight to be energy efficient, but then comes the question of how to provide the necessary fresh air that we and our houses need.  Robert Riversong (above thread and several others) has posted some great information on passive vents and the economics of simple exhaust venting that I think offers a good alternative to expensive H/ERV installations.  However, I feel there needs to be a better understanding of just how static venting works.

Most of us in the energy business have read about, used, or advised on using some form of passive venting for replacement air that involves a form of air trap.  Robert posted his version and mentioned the "Saskatoon Loop" as methods of restricting the unwanted air flow while still providing a path for the desired air flow.  I have looked at the "duct ending in a bucket" and the "loop up at the bottom" cold air traps in the past and concluded they are not exactly what they appear to be.  Essentially they modify the height and resistance of the flow path, but otherwise do not act as an air block.

 

Since the explanation of the above can be long, I have put together a simple statement that I feel conveys the guidance we need when designing and installing passive vents, at least some of the guidance.

"For any fresh air vent duct passing from inside a home to the outside (under natural pressures), the effective pressure from end to end of that duct is the stack effect pressure (wrto) at the height of:

1.  the outside opening when the duct is filled with inside temperature air.

2.  the inside opening when the duct is filled with outside temperature air.

3.  the penetration through the envelope when outside is filled with outside air and the inside is filled with inside air."

I haven't reviewed this for summer conditions, but I believe the statement will hold.

When any kind of winding path is filled with the same air as is around it, it might as well be a straight shot, if the structure allows.  Alternatively, if a straight shot is not possible, a winding path will not alter the effective air flow, other than adding a bit more resistance.

The bottom line is, passive venting should follow and use the internal pressures within a home, positive, negative, and that somewhat elusive NPP.

John is very good at challenging or explaining many of my statement and he creates great artwork, so I'll post this and see what we get for input from all.

Bud

Views: 4994

Reply to This

Replies to This Discussion

The coefficient is based on standard pressure, not temperature. And that formula is for delta-P inside to out, not absolute pressure.

The atmospheric pressure is the weight of the column of air on the earth's surface. That column remains the same mass whether it expands from heat or cools and contracts.

But the HVAC industry, uses standard pressure and temperature to determine air flow volume.

I think I found what I was looking for

Standard Temperature is zero degrees Celsius

Standard Pressure is pressure at sea level

Attached is a snip-it from Straube's textbook.

the formula does return Delta P if Delta H and Temperatures are known

it can also be used to solve for Delta H if Delta P and Temps are known

 

I used the formula to estimate the Delta Vertical  Isobar Spacing for Delta T

{Isobar = a line connecting points of equal atmospheric pressure}

Delta Isobar (Pa) Spacing ( Inches) = Delta T (Farenheit) x 0.0066

 

So...at sea level and 32 degrees F

Isobar Spacing  would be 3.14 inches

If the air in an example house is 68 F.. then Delta T = 36 F

Delta Isobar spacing = 36 x 0.0066 = 0.24 inches

Isobar spacing inside the house = 3.14 + 0.24 = 3.38 inches

The US Standard Atmosphere is based on a standard temperature of 59°F (the average air temperature at the earth's surface). http://en.wikipedia.org/wiki/U.S._Standard_Atmosphere

There are many other "standard" temperatures and pressures used by various organizations:

http://en.wikipedia.org/wiki/Standard_conditions_for_temperature_an...

Robert, I noticed that there are several "standards"

which standard (temperature) do you think Straube  is referring to?

The full SI formula for stack effect delta-P is:

ΔP =0.0342 x H x A x (1/TO - 1/TI), with A = atmospheric pressure

To get Straube's conversion factor of 3465, he's multiplying 0.0342 times 101,325, so he's using that as the standard atmospheric pressure.

NIST seems to use 68°F as the standard for gas flow. But you'll have to ask Straube which is the "new normal" for him.

RSS

Home Energy Pros

Home Energy Pros was founded by the developers of Home Energy Saver Pro (sponsored by the U.S. Department of Energy,) and brought to you in partnership with Home Energy magazine.

Latest Activity

Matthew Lutz commented on Kaplan Clean Tech's blog post The Difference Between Home Inspection and Energy Auditing [Infographic]
"I would have to agree with Steve on this.  I am a Certified Energy Manager and have performed…"
3 hours ago
Matthew Lutz joined Diane Chojnowski's group
Thumbnail

Hall of Shame

In this group, members share an array of images from the field, showing the kinds of issues…See More
3 hours ago
Matthew Lutz replied to Kari Sauder's discussion Easy Water Heater Venting in the group Hall of Shame
"I have been in the HVAC trade since 1986. I have recently completed a Home or Real Estate…"
3 hours ago
Susan E. Buchan posted an event

EEBA Houses That Work at Hilton Asheville Biltmore Park

November 3, 2014 from 8am to 4:30pm
Registration: 8:00 amSession: 8:30 am to 4:30 pmWorkshop Covers:Introduction to EEBA and its…See More
8 hours ago
Susan E. Buchan posted a status
"EEBA has scholarships to our Houses That Work Sessionsfor Vets! Contact info@eeba.org for more info"
8 hours ago
EnergyLogic Academy posted events
9 hours ago
Andrew Peel posted an event

Using PHPP in Building Design and Certification at Queen's Quay

November 24, 2014 at 9am to November 25, 2014 at 5pm
In this two-day course, participants will learn how to use the PHPP for residential building design…See More
10 hours ago
Graham Irwin replied to George Kopf's discussion How does efficiency factor into a grid parity world?
"John, Interesting though, if you read this NREL article…"
10 hours ago

© 2014   Created by Lawrence Berkeley National Laboratory.

Badges  |  Report an Issue  |  Terms of Service