Hi everyone, 

   A couple of my colleagues were discussing the benefits of air sealing, when I was asked if I could quantify the actual value of air sealing based on how many BTU's per CFM(50) of air leak.  The software does the energy savings calculations of air sealing for my clients, but I was never asked the actual value per BTU. I guess if I could answer that I would have a better understanding of the math behind the savings. 

Can anyone help me with this? Is there a formula?

Thanks

Luis

Tags: CFM, air, energy, saving, sealing

Views: 4667

Reply to This

Replies to This Discussion

Bud,

"In an article from one of the developers of the "n" number he stated the resulting estimate could be off by minus 50% to plus 100% so calling it a ball park estimate may be generous."

Do you recall the article you found this in?

Thanks,

Graham

I have looked but found no reference to that article.  But my background in research saw those numbers and concluded it wasn't much better than a wild guess, or the old empirical divide by twenty,  But since the results bracket the "20" pretty much, in general they are ok.  Part of what we do is to recognize what fits the many assumptions and what doesn't.  Unfortunately, that might improve our accuracy. but reduce our consistency and it is consistency that our system really demands, even if our numbers are wrong.

Consistently relying on software to generate our answers can be a risky way to do business.

Bud

If you were using TECTITE from The Energy Conservatory, you have this value right away.

Asking for an 'actual value of air sealing' is a research project.

Blower Door guided air-sealing works well for those of us in the real world.

Give the Advanced Infiltration tool a try from Residential Energy Dynamics (RED); I think it will do all you need. It is based on the Alberta Infiltration Model (AIM-2) and it includes TMY3 weather data for North America. It will give you the fuel use (therms, kwh, etc) for infiltration. Start with the pre-weatherization CFM50 and then the post-weatherization CFM50 to determine the savings from air sealing. The tools also does many other useful things.

Here is a link to this free tool: http://www.residentialenergydynamics.com/REDCalcFree/Tools/Advanced....

As a matter of disclosure, I am the author of this procedure, along with my business partner, Charlie Holly.

Bob,

Where does the value 1.08 come from?  I am more familiar with the  "0.018 BTUs per cubic foot to raise its temperature 1° F" that Bud cited.  Using a hypothetical 125 CFM nat. with a delta T of 50 F and your equation I get 6750 BTU/hr.  If I use 0.018 and the same equation I get 113 BTU/hr. Markedly different results.   

There is a factor of 60 difference between the answers that Graham is pointing out.

Reply by Graham Irwin 2 hours ago

Remember to convert CFM (cubic feet per MINUTE) to cubic feet per HOUR (i.e. ft3/hr = CFM/60) if you want an answer in BTU/hr."

Bud

1.08 represents the sensible heat constant. Any time that I've done these calcs it was left out because the complexity was beyond the scope of what I was trying to accomplish, but if someone with the time and expertise wants to expound on this I'd like to know more as well. 

I'll just turn Bob's equation around:

Q (BTU loss/gain) = 1.08 x CFM (natural) x ▲T (F°)

The short explanation is, we need to convert CFM to hours as Graham posted. Multiply by 60 min/hr

Then we have to specify the thermal capacity of air: 0.018 btus/ft³/F°

When that all gets factored in we get (60 x 0.018) which equals the 1.08 and the units of the equation come out in btus/hr.

I scratched that all out, but typing it in is a pain, so you got the short version.

Bud

Bud,

You explained it just fine.  Makes sense. 

Yes, and when I cannot sleep I do my own version counting the length of time my FAN runs to reset my internal temp then take into account the current Delta T of the night and then, finally when does the furnace come back on!

I obviously need help

Don't put any faith in standard formulas that convert cfm50 reductions into air sealing savings.  A house doesn't naturally experience air exchange at a 50 pascal pressure difference.  A blower door will cause air to enter the house from every penetration indiscriminately.  Under natural conditions, air exchange is caused from mechanical ventilation, wind and the stack effect.  An installer who cuts CFM50 in half by sealing windward and ceiling leaks will create MUCH more savings than another installer who just spray foams the sill box.

If anyone is aware of a formula that requires sealing location data to estimate savings, please let me know.  Until then, this is huge opportunity for building scientists to advance our industry.

Dmitri Martin

www.greenstarwi.com
Facebook Twitter Google+ LinkedIn

RSS

Featured Forum Discussions

Lighting replacement - 300 watt LED flood light

Started by Mary Sinkler in General Forum. Last reply by Dennis Heidner 15 hours ago. 2 Replies

Glass Block Windows

Started by Ken Kalke in Best Practices. Last reply by Sean Lintow Sr on Saturday. 1 Reply

What's the Most Profitable HVAC Job for Your Company?

Started by Wayne Melancon in HVAC. Last reply by Ken Kalke on Friday. 1 Reply

EZ Green Home is Hiring!

Started by Chloe Chapman in General Forum Jan 5. 0 Replies

Videos

  • Add Videos
  • View All

Latest Activity

Chris Laumer-Giddens's blog post was featured

Rock Wool Insulation for Floor of High Performance Tiny House

ROCK WOOL INSULATION FOR FLOOR OF HIGH PERFORMANCE TINY HOUSEIn August of 2016, we posted a video…See More
55 minutes ago
Horace Douglas Hunt, Jr. joined Tom White's group
Thumbnail

Weatherization

Share your concerns and successes as a weatherization professional, or information for this…See More
3 hours ago
Horace Douglas Hunt, Jr. joined Sean Lintow Sr's group
Thumbnail

Best Practices (Residential)

Best Building, Retrofitting, or even Auditing Practices - what are they, what should change, what…See More
3 hours ago
Horace Douglas Hunt, Jr. joined allen p tanner's group
Thumbnail

Energy Auditing Equipment for Sale, Trade or to Purchase

Discuss the pros and cons of the equipment you are interested in prior to purchase. Post equipment…See More
3 hours ago
Dennis Heidner replied to Mary Sinkler's discussion Lighting replacement - 300 watt LED flood light
"Have you looked how much light you need in the backyard and where you need the light?  Often a…"
15 hours ago
Nate Adams liked tedkidd's discussion Home Performance is Failing - let's turn that around?
19 hours ago
Nate Adams replied to tedkidd's discussion Home Performance is Failing - let's turn that around?
"Ira, you're not alone. Here in Cleveland the gas company uses their own auditors, it killed…"
19 hours ago
Nate Adams replied to tedkidd's discussion Home Performance is Failing - let's turn that around?
"Website is finally up, albeit still imperfect. You can check out the very detailed case studies.…"
19 hours ago

Home Energy Pros

Welcome to Home Energy Pros – the unique digital community by and for those who work in the home energy performance arena.

Home Energy Pros was founded by the developers of Home Energy Saver Pro (supported by the U.S. Department of Energy) and brought to you in partnership with Home Energy magazine.  Home Energy Pros is sponsored by the Better Buildings Residential Network. Please honor our Guidelines

© 2017   Created by Lawrence Berkeley National Laboratory.   Powered by

Badges  |  Report an Issue  |  Terms of Service